Abstract

To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better individuals are selected through the comparison of allelic genes, which can improve the population quality with the premise of ensuring the population diversity, and enhance the search speed and search precision of EIGA. Compared with the IGA and genetic algorithm (GA), the simulation results indicate that the proposed EIGA is characterized by quick convergence speed, high optimization precision and good stability, and the tasks are allocated rationally and scientifi-cally which realizes the task cooperation of multi-robot systems well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.