Abstract

Edge computing has a promising application prospect in the field of Internet of Things, especially cable real-time online monitoring business in a smart grid. However, for the relatively limited resources and capabilities of the edge nodes, such as computing resource and storage resource, it is hard to highly and comprehensively satisfy the high real-time requirements of cable online monitoring tasks. To solve this problem, effectively dynamic task allocation is needed on the basis of efficient utilization and optimization of resource and capabilities of the edge nodes. In this article, a task allocation mechanism for cable real-time online monitoring business based on edge computing is proposed. First, considering the linear distribution characteristics of the cable, the statuses of edge nodes, the processing overhead of tasks, and the scheduling strategy of delay-sensitive tasks, we establish a task allocation model based on edge computing. Second, a task allocation strategy based on improved discrete particle swarm optimization is proposed. In our strategy, we focus on the task queuing problem in edge nodes and the optimized task allocation problem among edge nodes. Simulation results show that the task allocation mechanism proposed in this article can effectively reduce the average delay of cable real-time online monitoring businesses, and further improve the security and reliability of the smart grid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.