Abstract

Purple acid phosphatases (PAPs) are binuclear acid metallohydrolases also referred to as tartrate-resistant acid phosphatases (TRAPs) or type 5 acid phosphatases. The cDNA sequences of TRAP/PAP enzymes from different species and organs indicate that these enzymes are translated as monomeric polypeptides of approx. 35 kDa, contrasting with the predominantly two-subunit structure observed in purified enzyme preparations. In the present study we have compared certain structural and enzyme-kinetic properties of recombinant rat PAP (monomeric) with those of the native rat bone TRAP/PAP enzyme (two-subunit), and examined effects on these parameters by cleaving the monomeric recombinant PAP with the serine proteinase trypsin or the cysteine proteinases papain or cathepsin B. Cleavage with trypsin resulted in a moderate activation of the recombinant enzyme and shifted the pH optimum to a slightly more basic value (5.0-5.5). Cleavage with papain resulted in complete activation and conferred similar properties to those of the bone PAP variant with regard to pH optimum (5.5-6.0) and sensitivity to reducing agents, as well as in the sizes of the subunits. Substrate specificity studies showed that the two-subunit bone PAP was considerably more active than the monomeric recombinant rat PAP towards a variety of serine-, threonine- and tyrosine-phosphorylated substrates. Of these substrates, bovine milk osteopontin seemed to be the most readily dephosphorylated substrate. In conclusion, the results suggest that the monomeric form of PAP represent a latent proenzyme with low enzymic activity towards both tyrosine- and serine/threonine-containing phosphorylated substrates. Besides being implicated in the catabolism of the extracellular matrix, members of the cysteine proteinase family might also exert a regulatory role in degradative processes involving the PAP enzymes by converting the newly synthesized PAPs to enzymically active and microenvironmentally regulated species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call