Abstract

BackgroundThe acid component of grape berries, originating in the metabolism of malate and tartrate, the latter being less well-known than the former, is a key factor at play in the microbiological stability of wines destined for distillation. Grape acidity is increasingly affected by climate changes. The ability to compare two vintages with contrasted climatic conditions may contribute to a global understanding of the regulation of acid metabolism and the future consequences for berry composition.ResultsThe results of the analyses (molecular, protein, enzymatic) of tartrate biosynthesis pathways were compared with the developmental accumulation of tartrate in Ugni blanc grape berries, from floral bud to maturity. The existence of two distinct steps during this pathway was confirmed: one prior to ascorbate, with phases of VvGME, VvVTC2, VvVTC4, VvL-GalDH, VvGLDH gene expression and abundant protein, different for each vintage; the other downstream of ascorbate, leading to the synthesis of tartrate with maximum VvL-IdnDH genetic and protein expression towards the beginning of the growth process, and in correlation with enzyme activity regardless of the vintage.ConclusionsOverall results suggest that the two steps of this pathway do not appear to be regulated in the same way and could both be activated very early on during berry development.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0833-1) contains supplementary material, which is available to authorized users.

Highlights

  • The acid component of grape berries, originating in the metabolism of malate and tartrate, the latter being less well-known than the former, is a key factor at play in the microbiological stability of wines destined for distillation

  • In Ugni blanc grape berries, the expression profile of the Vitis vinifera L. GME gene (VvGME), Vitis vinifera L. VTC2 gene (VvVTC2), and VvL-GalDH genes corresponds to the results obtained with other cultivars [9], and to those obtained with other plants such apple leaf [35] or tomato fruit [34], which confirms the common phylogenetic heritage of the Smirnoff-Wheeler pathway in higher plants

  • These results suggest that the enzymes that are involved in the tartaric acid synthesis act independently of the enzyme suite involved in the SmirnoffWheeler pathway

Read more

Summary

Introduction

The acid component of grape berries, originating in the metabolism of malate and tartrate, the latter being less well-known than the former, is a key factor at play in the microbiological stability of wines destined for distillation. Many studies carried out on different grape varieties, have demonstrated that one of the main consequences of abiotic stress in grapes resulting from this change is a decrease in acidity [16, 17], rendering wine preservation and storage more problematic [18, 19] This is especially true for wine destined for distillation, as in the case of Ugni Blanc wine for Cognac (Charente county, France), as these wines must (under French law) be stored in tanks without sulfites prior to distillation (decree n°2015-10 of 07 January 2015), which means they must have a high level of acidity in order to avoid microbiological spoilage or the development of olfactory defects following distillation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.