Abstract
Magnetic resonance imaging (MRI)/ultrasound (US) fusion-guided biopsy has improved the ability to localize and detect prostate cancer (PCa) with efficiency surpassing systematic biopsy. Nevertheless, some patients have PCa missed using the MRI-targeted biopsy sampling alone. We aim to identify clinical and imaging parameters associated with cases where targeted biopsy did not detect PCa compared to systematic biopsy. We conducted a retrospective review of patients who underwent MRI/US fusion-guided biopsy in addition to concurrent systematic, extended-sextant biopsy between 2014 and 2017. For patients with PCa detected on systematic biopsy not properly localized by MRI/US fusion-guided biopsy, the sextant distance from MRI-targeted lesion to the cancer-positive sextant was calculated and parameters potentially predicting this targeting miss were evaluated. In all, 35/127 (27.6%) patients with single-session MRI/US fusion-guided biopsy plus standard biopsy finding PCa had lesions incorrectly localized. Of these, 15/35 (42.9%) were identified as possible fusion-software misregistrations. The remainder, 12/35 (34.3%), represented targeted biopsies one sextant away from the cancer focus and 8/35 (22.9%) targeted biopsies two sextants away from the cancer focus. Only 7/35 (20.0%) patients were determined to have clinically significant PCa, which represents 7/127 (5.5%) of the overall population. Lower MRI lesion volumes (p = 0.022), lesion density (p < 0.001), and PI-RADS scores (p < 0.001) were significantly associated with targeted biopsy missing PCa detected on systematic biopsy. Clinically significant PCa is rarely missed utilizing MRI/US fusion-guided biopsy. With the majority of missed tumors representing targeting misregistrations or cases of low-grade cancer in sextants immediately adjacent to MRI suspicious lesions. Lower MRI lesion volumes, lesion density, and PI-RADS are predictors of cases with targeted biopsies missing cancer, for which systematic sampling of the sextants containing MRI targets and adjacent sextants would most optimize PCa detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.