Abstract

Targeting the cell cycle checkpoints and DNA damage response are promising therapeutic strategies for cancer. Adavosertib is a potent inhibitor of WEE1 kinase, which plays a critical role in regulating cell cycle checkpoints. However, the effect of adavosertib on hepatocellular carcinoma (HCC) treatment, including sorafenib-resistant HCC, has not been thoroughly studied. In this study, we comprehensively investigated the efficacy and pharmacology of adavosertib in HCC therapy. Adavosertib effectively inhibited the proliferation of HCC cells in vitro and suppressed tumor growth in HCC xenografts and patient-derived xenograft (PDX) models in vivo. Additionally, adavosertib treatment effectively inhibited the motility of HCC cells by impairing pseudopodia formation. Further, we revealed that adavosertib induced DNA damage and premature mitosis entrance by disturbing the cell cycle. Thus, HCC cells accumulating DNA damage underwent mitosis without G2/M checkpoint arrest, thereby leading to mitotic catastrophe and apoptosis under adavosertib administration. Given that sorafenib resistance is common in HCC in clinical practice, we also explored the efficacy of adavosertib in sorafenib-resistant HCC. Notably, adavosertib still showed a desirable inhibitory effect on the growth of sorafenib-resistant HCC cells. Adavosertib markedly induced G2/M checkpoint arrest and cell apoptosis in a dose-dependent manner, confirming the similar efficacy of adavosertib in sorafenib-resistant HCC. Collectively, our results highlight the treatment efficacy of adavosertib in HCC regardless of sorafenib resistance, providing insights into exploring novel strategies for HCC therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.