Abstract

Chemoresistance is one of the leading causes for the failure of tumor treatment. Hence, it is necessary to study further and understand the potential mechanisms of tumor resistance to design and develop novel anti-tumor drugs. Post-translational modifications are critical for proteins’ function under physiological and pathological conditions, among which ubiquitination is the most common one. The protein degradation process mediated by the ubiquitin-proteasome system is the most well-known function of ubiquitination modification. However, ubiquitination also participates in the regulation of many other biological processes, such as protein trafficking and protein-protein interaction. A group of proteins named deubiquitinases can hydrolyze the isopeptide bond and disassemble the ubiquitin-protein conjugates, thus preventing substrate proteins form degradation or other outcomes. Ubiquitin-specific protease 7 (USP7) is one of the most extensively studied deubiquitinases. USP7 exhibits a high expression signature in various malignant tumors, and increased USP7 expression often indicates the poor tumor prognosis, suggesting that USP7 is a marker of tumor prognosis and a potential drug target for anti-tumor therapy. In this review, we first discussed the structure and function of USP7. Further, we summarized the underlying mechanisms by which tumor cells develop resistance to anti-tumor therapies, provided theoretical support for targeting USP7 to overcome drug resistance, and some inspiration for the design and development of USP7 inhibitors.

Highlights

  • Cancer is a significant public health problem worldwide, which seriously threatens patients’ health and lives and brings a heavy burden to individuals, families and society (Chen et al, 2016; Siegel et al, 2021)

  • While the specific signaling pathways regulated by Ubiquitin-specific protease 7 (USP7) may differ in the above processes, the consequence is always that the deubiquitinating activity of USP7 leads to an aberrant fate of substrate proteins and consequent involvement in the generation of drug resistance

  • A wide range of proteins have been identified as the potential substrates and binding partners of USP7, including p53, PTEN, CHK1, CHFR, and so on, most of which and their downstream signaling cascades are necessary for DNA repair, epigenetic control, tumor suppression and immune response (Wang et al, 2019)

Read more

Summary

Introduction

Cancer is a significant public health problem worldwide, which seriously threatens patients’ health and lives and brings a heavy burden to individuals, families and society (Chen et al, 2016; Siegel et al, 2021). Due to the large variety of substrate proteins modified by ubiquitination, the UPS pathway plays a critical part in diverse cellular processes, including cell proliferation, apoptosis, differentiation, gene expression, transcription regulation, signal transduction, damage repair, inflammation, and immunity (Narayanan et al, 2020).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call