Abstract

Like several 50nm-large nanocarriers, lipid nanoparticles (LNPs) can passively accumulate in tumors through the Enhanced Permeability and Retention (EPR) effect. In this study, we developed PEGylated LNPs loaded with IR780 iodide as a contrast agent for NIR fluorescence imaging and modified them with cyclic RGD peptides in order to target integrin avβ3. We demonstrate a specific targeting of the receptor with cRGD-LNPs but not with cRAD-LNP and standard LNP using HEK293(β3), HEK293(β3)-αvRFP, DU145 and PC3 cell lines. We also demonstrate that cRGD-LNPs bind to αvβ3, interfere with cell adhesion to vitronectin and co-internalize with αvβ3 within one hour. We then investigated their biodistribution and tumor targeting in mice bearing DU145 or M21 tumors. We observed no significant differences between cRGD-LNP and the non-targeted ones regarding their biodistribution and accumulation/retention in tumors. This suggested that despite an efficient formulation of the cRGD-LNPs, the cRGD-mediated targeting was not increasing the total amount of LNP that can already accumulate passively in the subcutaneous tumors via the EPR effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call