Abstract

The identification of a critical role of tumour stroma in the regulation of tumour interstitial fluid pressure and the simultaneous discovery of the impact of anti-angiogenic drugs on tumour hemodynamics have provided new potential for improving tumour delivery of anti-cancer drugs. Here, we review the most recent studies investigating how tumour-associated fibroblasts and macrophages as well as the extracellular matrix itself may be targeted to facilitate delivery of both low-molecular weight drugs and macromolecules. In addition, we summarize the current understanding of the use of vasoactive compounds, radiotherapy and vascular-disrupting agents as potential adjuvants to maximize tumour delivery of anti-cancer drugs. The impact of these strategies on the diffusive and convective modes of drug transport is discussed in the light of Fick's and Starling's laws. Finally, we discuss how transcytosis through caveolae may also be exploited to optimize the selective delivery of conventional chemotherapy to the subendothelial tumour cell compartment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.