Abstract

Cancer develops resistance to treatments through many mechanisms. Single-cell analyses reveal the intratumor heterogeneity and dynamic relationships between cancer cell subpopulations. These analyses also highlight that various mechanisms of resistance may coexist in a given tumor. Studies have unraveled how the microenvironment affects tumor response to treatments and how cancer cells may adapt to these treatments. Though challenging, individualized treatment based on the molecular characterization of the tumor should become the new standard of care. In the meantime, the success rate of clinical trials in oncology remains dramatically low. There is a need to do better and improve the predictability of preclinical models. This requires innovative changes in ex vivo models and the culture system currently being used. An innovative ligand design is also urgently needed. The limited arsenal of medicinal chemistry reactions and the biases of scaffold selection favor structurally similar compounds with linear shapes at the expense of disc and spherical shapes, which leave a large chemical shape space untouched. In this regard, venoms have received increasing interest as a wellspring for drug candidates. Overall, the characterization of tumor heterogeneity has contributed to advancing our understanding of the mechanisms that underlie cancer resistance to treatments. Targeting these mechanisms will require setting key milestones to significantly improve the translatability of preclinical studies to the clinic with the hope of increasing the success rate of clinical trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call