Abstract

Hypoxia, a partial pressure of oxygen (pO2) below physiological needs, is a limiting factor affecting the efficiency of radiotherapy. Indeed, the reaction of reactive oxygen species (ROS, produced by water radiolysis) with DNA is readily reversible unless oxygen stabilizes the DNA lesion. While normal tissue oxygenation is around 40 mm Hg, both rodent and human tumors possess regions of tissue oxygenation below 10 mm Hg, at which tumor cells become increasingly resistant to radiation damage (radiobiological hypoxia) (Gray, 1953). Because of this so-called “oxygen enhancement effect”, the radiation dose required to achieve the same biologic effect is about three times higher in the absence of oxygen than in the presence of normal levels of oxygen (Gray et al., 1953; Horsman & van der Kogel, 2009). Hypoxic tumor cells, which are therefore more resistant to radiotherapy than well oxygenated ones, remain clonogenic and contribute to the therapeutic outcome of fractionated radiotherapy (Rojas et al., 1992). Tumor hypoxia results from the imbalance between oxygen delivery by poorly efficient blood vessels and oxygen consumption by tumor cells with high metabolic activities. On the one hand, oxygen delivery is impaired by structural abnormalities present in the tumor vasculature (Munn, 2003). They include caliber variations with dilated and narrowed single branches of tumor vessels, non-hierarchical vascular networks, disturbed precapillary architecture, and incomplete vascular walls. These structural abnormalities cause numerous functional impairments, i.e. increased transcapillary permeability, increased vascular permeability, interstitial hypertension, and increased flow resistance (Boucher et al., 1996; McDonald & Baluk, 2002). It is however important to note that, although hastily formed immature tumor microvessels lack smooth muscle layer(s) and are therefore unable to provide autoregulation, it is not uncommon to find mature blood vessels with smooth muscle layers and neural junctions inside slow-growing tumors (e.g. most human tumors) (Feron, 2004). On the other hand, the altered tumor cell metabolism with elevated metabolic rates also contributes to the occurrence of hypoxic regions in tumors and further causes extracellular acidification. Tumor hypoxia occurs in two ways: chronic hypoxia (or diffusion-limited hypoxia), and acute hypoxia (or perfusion-limited or fluctuating hypoxia). Chronic hypoxia has classically been thought to result from long diffusion distances

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.