Abstract

Tumor-associated macrophages (TAMs) constitute 50–80% of stromal cells in most solid tumors with high mortality and poor prognosis. Tumor-infiltrating dendritic cells (TIDCs) and TAMs are key components mediating immune responses within the tumor microenvironment (TME). Considering their refractory properties, simultaneous remodeling of TAMs and TIDCs is a potential strategy of boosting tumor immunity and restoring immunosurveillance. In this study, mannose-decorated poly(lactic-co-glycolic acid) nanoparticles loading with R848 (Man-pD-PLGA-NP@R848) were prepared to dually target TAMs and TIDCs for efficient tumor immunotherapy. The three-dimensional (3D) cell culture model can simulate tumor growth as influenced by the TME and its 3D structural arrangement. Consequently, cancer spheroids enriched with tumor-associated macrophages (TAMs) were fabricated to assess the therapeutic effectiveness of Man-pD-PLGA-NP@R848. In the TME, Man-pD-PLGA-NP@R848 targeted both TAMs and TIDCs in a mannose receptor-mediated manner. Subsequently, Man-pD-PLGA-NP@R848 released R848 to activate Toll-like receptors 7 and 8, following dual-reprograming of TIDCs and TAMs. Man-pD-PLGA-NP@R848 could uniquely reprogram TAMs into antitumoral phenotypes, decrease angiogenesis, reprogram the immunosuppressive TME from “cold tumor” into “hot tumor”, with high CD4+ and CD8+ T cell infiltration, and consequently hinder tumor development in B16F10 tumor-bearing mice. Therefore, dual-reprograming of TIDCs and TAMs with the Man-pD-PLGA-NP@R848 is a promising cancer immunotherapy strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.