Abstract

Excessive production of proinflammatory cytokines, elicited mostly by Th1 cells, is an important cause of cerebral malaria (CM). Dendritic cells (DCs), a critical link between innate and adaptive immune responses, rely heavily on Toll-like receptor (TLR) signaling. Using C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) as an experimental CM model, we first confirmed that inhibition of TLR9 by suppressive oligodeoxynucleotides protected mice from CM. In addition to being a well-known antimalarial, chloroquine (CQ) has been used as an immunomodulator of endocytic TLRs because it inhibits endosomal acidification. We found that immediately before and shortly after infection by PbA, treatment with a single dose of 50mg/kg of CQ protected mice from experimental CM. Both CQ treatments significantly inhibited expression of TLR9 and MHC-II on DCs, and reduced the number of myeloid and plasmatocytoid DCs at 3 and 5days after infection. Consequently, activation of CD4+ T cells, especially the expansion of the Th1 subsets, was dramatically inhibited in CQ treated groups, which was accompanied by a remarkable decline in the production of Th1 type proinflammatory mediators IFN-γ, TNF-α, and nitric oxide. Taken together, these results corroborated the involvement of TLR9 in CM pathogenesis and suggest that interference with the activation of this receptor is a promising strategy to prevent deleterious inflammatory response mediating pathogenesis and severity of malaria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call