Abstract

IntroductionThe estrogen receptor (ER) co-regulator proline glutamic acid and leucine-rich protein 1 (PELP1) is a proto-oncogene that modulates epigenetic changes on ER target gene promoters via interactions with lysine-specific histone demethylase 1 (KDM1). In this study, we assessed the therapeutic potential of targeting the PELP1-KDM1 axis in vivo using liposomal (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine; DOPC) siRNA to downregulate PELP1 expression and KDM1 inhibitors, pargyline and N-((1S)-3-(3-(trans-2-aminocyclopropyl)phenoxy)-1-(benzylcarbamoyl)propyl)benzamide using preclinical models.MethodsPreclinical xenograft models were used to test the efficacy of drugs in vivo. Ki-67 and terminal deoxynucleotidyl transferase dUTP nick end-labeling immunohistochemical analysis of epigenetic markers was performed on tumor tissues. The in vitro effect of PELP1-KDM axis blockers was tested using proliferation, reporter gene, chromatin immunoprecipitation and real-time RT-PCR assays. The efficacy of the KDM1 targeting drugs alone or in combination with letrozole and tamoxifen was tested using therapy-resistant model cells.ResultsTreatment of ER-positive xenograft-based breast tumors with PELP1-siRNA-DOPC or pargyline reduced tumor volume by 58.6% and 62%, respectively. In a postmenopausal model, in which tumor growth is stimulated solely by local estrogen synthesis, daily pargyline treatment reduced tumor volume by 78%. Immunohistochemical analysis of excised tumors revealed a combined decrease in cellular proliferation, induction of apoptosis and upregulation of inhibitory epigenetic modifications. Pharmacological inhibition of KDM1 in vitro increased inhibitory histone mark dimethylation of histone H3 at lysine 9 (H3K9me2) and decreased histone activation mark acetylation of H3K9 (H3K9Ac) on ER target gene promoters. Combining KDM1 targeting drugs with current endocrine therapies substantially impeded growth and restored sensitivity of therapy-resistant breast cancer cells to treatment.ConclusionOur results suggest inhibition of PELP1-KDM1-mediated histone modifications as a potential therapeutic strategy for blocking breast cancer progression and therapy resistance.

Highlights

  • The estrogen receptor (ER) co-regulator proline glutamic acid and leucine-rich protein 1 (PELP1) is a proto-oncogene that modulates epigenetic changes on ER target gene promoters via interactions with lysine-specific histone demethylase 1 (KDM1)

  • PELP1 knockdown reduces proliferation and enhances inhibitory epigenetic modifications We previously demonstrated the feasibility of silencing PELP1 gene expression in vivo through systemic administration of PELP1 small interfering RNA (siRNA) [26]

  • Several published studies have validated the delivery and therapeutic efficacy of DOPC-based siRNA nanoliposomes to knock down expression of specific genes in vivo [23,27,28]

Read more

Summary

Introduction

The estrogen receptor (ER) co-regulator proline glutamic acid and leucine-rich protein 1 (PELP1) is a proto-oncogene that modulates epigenetic changes on ER target gene promoters via interactions with lysine-specific histone demethylase 1 (KDM1). ERa transcriptional activity is regulated by steroid hormones alone and requires co-regulatory proteins [5,6]. ERa co-regulatory proteins are tightly regulated under normal conditions, with misexpression primarily reported in the literature in association with a number of disease states. Over one-third of the nearly 300 distinct co-regulators identified are overexpressed or underexpressed in human cancers; 38% of co-regulators are overexpressed in breast cancer [7]. These findings suggest that deregulated co-regulator expression may promote carcinogenesis and/or progression of endocrine-related cancers. Co-regulator expression represents an indirect means of targeting ERa activity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call