Abstract

The pharmacological targeting of microcirculatory dysregulations is a therapeutic strategy for the treatment of numerous pathological conditions, such as cancer, thrombosis and inflammation. A promising candidate for this purpose is indole-3-carbinol (I3C), a phytochemical compound of cruciferous vegetables, and its main derivate 3,3,'-diindolylmethane (DIM). As summarized in this review, I3C and DIM affect multiple molecular and cellular processes within the microcirculation due to their pleiotropic action profile. These include angiogenesis, leukocyte-endothelial cell interaction, cytokine and reactive oxygen species (ROS) production, thrombus formation and microvascular leakage. Hence, I3C may serve as a lead compound for the future chemical synthesis of novel drugs that exert comparable beneficial effects while exhibiting an improved bioavailability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.