Abstract

Kidney diseases, both acute and chronic, are a substantial burden on individual and public health, and they continue to increase in frequency. Despite this and an intense focus on the study of disease mechanisms, few new therapeutic approaches have extended to the clinic. This is in part due to poor pharmacology of many, if not most, therapeutics with respect to the sites of kidney disease within the glomerulus or nephron. Considering this, within the past decade, and more pointedly over the past 2 years, there have been substantial developments in nanoparticle systems to deliver therapeutics to the sites of kidney disease. Here, we provide a broad overview of the various classes of nanomaterials that have been developed to improve therapeutic development for kidney diseases, the strategy used to provide kidney accumulation, and briefly the disease models they focused on, if any. We then focus on one specific system, polymeric mesoscale nanoparticles, which has broadly been used over 13 publications, demonstrating targeting of the tubular epithelium with 26-fold specificity compared with other organs. While there have been several nanomedicines that have advanced to the clinic in the past several decades, including mRNA-based coronavirus disease vaccines and others, none have focused on kidney diseases specifically. In total, we are confident that the rapid advancement of nanoscale-based kidney targeting and a concerted focus by clinicians, scientists, engineers, and other stakeholders will push one or more of these technologies into clinical trials over the next decade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.