Abstract

Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors regulated by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes and are key to cell adaptation to low oxygen. The hematopoietic stem cell (HSC) niche in the bone marrow is highly heterogeneous in terms of microvasculature and thus oxygen concentration. The importance of hypoxia and HIFs in the hematopoietic environment is becoming increasingly recognized. Many small compounds that inhibit PHDs have been developed, enabling HIFs to be pharmacologically stabilized in an oxygen-independent manner. The use of PHD inhibitors for therapeutic intervention in hematopoiesis is being increasingly investigated. PHD inhibitors are well established to increase erythropoietin production to correct anemia in hemodialysis patients. Pharmacological stabilization of HIF-1α protein with PHD inhibitors is also emerging as an important regulator of HSC proliferation and self-renewal. Administration of PHD inhibitors increases quiescence and decreases proliferation of HSCs in the bone marrow in vivo, thereby protecting them from high doses of irradiation and accelerating hematological recovery. Recent findings also show that stabilization of HIF-1α increases mobilization of HSCs in response to granulocyte colony-stimulating factor and plerixafor, suggesting that PHD inhibitors could be useful agents to increase mobilization success in patients requiring transplantation. These findings highlight the importance of the hypoxia-sensing pathway and HIFs in clinical hematology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.