Abstract

IFN-gamma-inducible protein 10 (IP-10) is a CXC chemokine that is thought to manifest a proinflammatory role because it stimulates the directional migration of activated T cells, particularly Th1 cells. It is an open question whether this chemokine is also directly involved in T cell polarization. We show here that during the course of adjuvant-induced arthritis the immune system mounts a notable Ab titer against self-IP-10. Upon the administration of naked DNA encoding IP-10, this titer rapidly accelerates to provide protective immunity. Self-specific Ab to IP-10 developed in protected animals, as well as neutralizing Ab to IP-10 that we have generated in rabbits, could inhibit leukocyte migration, alter the in vivo and in vitro Th1/Th2 balance toward low IFN-gamma, low TNF-alpha, high IL-4-producing T cells, and adoptively transfer disease suppression. This not only demonstrates the pivotal role of this chemokine in T cell polarization during experimentally induced arthritis but also suggests a practical way to interfere in the regulation of disease to provide protective immunity. From the basic science perspective, this study challenges the paradigm of in vivo redundancy. After all, we did not neutralize the activity of other chemokines that bind CXCR3 (i.e., macrophage-induced gene and IFN-inducible T cell alpha chemoattractant) and yet significantly blocked not only adjuvant-induced arthritis but also the in vivo competence to mount delayed-type hypersensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.