Abstract
The Fanconi anemia/BRCA (FA/BRCA) DNA damage repair pathway plays a pivotal role in the cellular response to replicative stress induced by DNA alkylating agents and greatly influences drug response in cancer treatment. We recently reported that FA/BRCA genes are overexpressed and causative for drug resistance in human melphalan-resistant multiple myeloma cell lines. However, the transcriptional regulation of the FA/BRCA pathway is not understood. In this report, we describe for the first time a novel function of the NF-kappaB subunits, RelB/p50, as transcriptional activators of the FA/BRCA pathway. Specifically, our findings point to constitutive phosphorylation of IkappaB kinase alpha and subsequent alterations in FANCD2 expression and function as underlying events leading to melphalan resistance in repeatedly exposed multiple myeloma cells. Inhibiting NF-kappaB by small interfering RNA, blocking the IkappaB kinase complex with BMS-345541, or using the proteasome inhibitor bortezomib drastically reduced FA/BRCA gene expression and FANCD2 protein expression in myeloma cells, resulting in diminished DNA damage repair and enhanced melphalan sensitivity. Importantly, we also found that bortezomib decreases FA/BRCA gene expression in multiple myeloma patients. These results show for the first time that NF-kappaB transcriptionally regulates the FA/BRCA pathway and provide evidence for targeting Fanconi anemia-mediated DNA repair to enhance chemotherapeutic response and circumvent drug resistance in myeloma patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.