Abstract

We recently demonstrated that the orphan nuclear receptor testicular receptor 4 (TR4) is a potent regulator of corticotroph tumor growth and hormone secretion. The Ras/Raf/MEK/ERK pathway is commonly overactivated in human tumors and we have demonstrated that corticotroph tumor TR4 is activated by ERK1/2-mediated phosphorylation. We evaluated effects of MEK-162, a selective, non-ATP-competitive allosteric inhibitor of MEK1/2, on murine and human in vitro and in vivo corticotroph tumor proliferation and adrenocorticotrophic hormone (ACTH) secretion. MEK-162 treatment dose-dependently inhibited corticotroph tumor proliferation, induced apoptosis, reduced pro-opiomelanocortin (POMC) mRNA levels and inhibited ACTH secretion in vitro. Similar findings were obtained in human corticotroph tumor primary cultures (n = 5). These actions of MEK-162 were augmented in the presence of TR4 overexpression, suggesting that TR4 levels may serve as a predictive biomarker of MEK-162 corticotroph tumor responsiveness. Additionally, MEK-162 treatment reduced TR4 protein expression and blocked recruitment of TR4 to bind its consensus site on the POMC promoter (−854bp to −637bp), elucidating multiple mechanisms to control TR4 corticotroph tumor actions. In a murine corticotroph tumor in vivo model of Cushing's disease, MEK-162 treatment inhibited tumor growth and reduced tumor-derived circulating plasma ACTH, and corticosterone levels. These results demonstrate the potent actions of MEK-162 to inhibit corticotroph tumor growth and hormone secretion in vitro and in vivo via TR4-dependent and independent mechanisms, and raise the possibility of MEK-162 as a novel therapy for Cushing's disease.

Highlights

  • Pituitary adenomas are commonly encountered intracranial tumors and cause significant morbidity and mortality due to local compressive effects and hormonal hypersecretion [1]

  • Cushing disease is a life-threatening neuroendocrine disorder caused by a pituitary adenoma, which leads to excess adrenocorticotrophic hormone (ACTH) secretion, and adrenal-derived cortisol

  • The specific targets of Ras/Raf/MEK/ERK pathway in the pathogenesis of pituitary adenomas are largely uncharacterized, our recent findings show that testicular receptor 4 (TR4), a potent regulator of corticotroph tumor growth and hormone secretion, is activated by ERK-mediated phosphorylation to regulate hormone synthesis [9]

Read more

Summary

Introduction

Pituitary adenomas are commonly encountered intracranial tumors and cause significant morbidity and mortality due to local compressive effects and hormonal hypersecretion [1]. In particular Cushing’s disease, due to an adrenocorticotrophic hormone (ACTH)-secreting pituitary adenoma, results in excessive adrenal cortisol secretion, leading to increased morbidity and mortality [2,3,4,5]. Transphenoidal resection is currently first-line therapy offering initial remission rates of 70-80% in expert centers for microadenomas [1]. Available drugs for Cushing’s disease treatment include the dopamine D2 receptor agonist, cabergoline and the somatostatin receptor ligand pasireotide that inhibit tumor-derived ACTH secretion; steroidogenesis inhibitors such as ketoconazole and metyrapone; and the glucocorticoid receptor antagonist mifepristone [1, 6]. Safe and efficacious therapies that act directly www.impactjournals.com/oncotarget on the tumor to control both hormonal hypersecretion and pituitary corticotroph tumor growth are needed

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.