Abstract
Alterations in chromatin structure resulting from aberrant DNA methylation and perturbations of the histone code profoundly influence gene expression during pulmonary carcinogenesis. Recent studies indicate that DNA demethylating agents and histone deacetylase (HDAC) inhibitors synergistically induce gene expression and apoptosis in cultured lung cancer cells, and prevent lung cancer development in animals following exposure to tobacco carcinogens. Preliminary clinical trials have established proof of principle regarding the use of DNA demethylating agents and HDAC inhibitors for enhancing immunogenicity and apoptosis of lung cancer cells, and have revealed the complexities concerning the mechanisms by which chromatin remodeling agents mediate antitumor effects in vivo. These data support additional investigations pertaining to the epigenetics of lung cancer, and the evaluation of chromatin remodeling agents for the treatment and prevention of this disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.