Abstract

Viral assembly, similar to other self-organizing protein systems, relies upon early building blocks, which associate into the late supramolecular structures. An initial and crucial event during HIV-1 core assembly is the dimerization of the capsid protein C-terminal domain, which stabilizes the viral capsid lattice. Thus, monitoring and manipulating this stage is desirable both from mechanistic as well as clinical perspectives. Here, we developed a fluorescent-based method for the detection and visualization of these early capsid interactions. We detected strong dimeric interactions, which were influenced by mutations in the capsid protein. We utilized this assay for potential assembly inhibitors screening, which resulted in the identification of a leading compound that hinders the assembly of capsid protein in vitro. Moreover, a derivative of the compound impaired virus production and infectivity in cell cultures. These findings demonstrate that the described assay efficiently detects the very first association events in HIV-1 capsid formation and emphasize the significance of targeting early intermolecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.