Abstract

Many strategies used to kill cancer cells induce stress-responses that activate survival pathways to promote emergence of a treatment resistant phenotype. Secretory clusterin (sCLU) is a stress-activated cytoprotective chaperone up-regulated by many varied anticancer therapies to confer treatment resistance when overexpressed. sCLU levels are increased in several treatment recurrent cancers including castrate resistant prostate cancer, and therefore sCLU has become an attractive target in cancer therapy. sCLU is not druggable with small molecule inhibitors, therefore nucleotide-based strategies to inhibit sCLU at the RNA level are appealing. Preclinical studies have shown that antisense oligonucleotide (ASO) or siRNA knockdown of sCLU have preclinical activity in combination with hormone- and chemotherapy. Phase I and II clinical trial data indicate that the second generation ASO, custirsen (OGX-011), has biologic and clinical activity, suppressing sCLU expression in prostate cancer tissues by more than 90%. A randomized study comparing docetaxel-custirsen to docetaxel alone in men with castrate resistant prostate cancer reported improved survival by 7 months from 16.9 to 23.8 months. Strong preclinical and clinical proof-of-principle data provide rationale for further study of sCLU inhibitors in randomized phase III trials, which are planned to begin in 2010.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.