Abstract

Human platelet activation and aggregation is a complex process. To date, many therapies have been developed targeting proteins that mediate this process to prevent unwanted activation. However, the current standard of care for acute coronary syndromes still has limitations, including bleeding risk. To evaluate the protease-activated receptor 4 (PAR4) anionic cluster as a viable antiplatelet target by using a polyclonal antibody (CAN12). We used western blotting, aggregation and secretion ex vivo to evaluate the ability of CAN12 to interact with PAR4 and inhibit platelet activation. The effects of CAN12 in vivo were evaluated with the Rose Bengal arterial thrombosis model and two models of hemostasis. CAN12 was able to interact with human PAR4 and delay PAR4 cleavage. In addition, CAN12 inhibited thrombin-induced human platelet aggregation and secretion in a dose-dependent manner. The specificity of CAN12 was agonist-dependent. In vivo, we determined that CAN12 was able to inhibit arterial thrombosis, and, using two independent methods, we found that CAN12 did not influence hemostasis. Targeting the extracellular anionic cluster on PAR4 is a viable novel strategy as an antiplatelet therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.