Abstract

Sublingual immunotherapy (SLIT) efficacy could be improved by formulations facilitating allergen contact with the oral mucosa and uptake by antigen-presenting cells (APCs). Two types of chitosan microparticles, differing in size and surface charge, were tested in vitro for their capacity to improve antigen uptake and presentation by murine bone marrow-derived dendritic cells (BMDCs) or purified oral APCs. T-cell priming in cervical lymph nodes (LNs) was assessed by intravenous transfer of carboxyfluorescein diacetate succinimidyl ester-labelled ovalbumin (OVA)-specific CD4+ T cells and flow cytometry analysis. Ovalbumin-sensitized BALB/c mice were treated sublingually with soluble or chitosan-formulated OVA twice a week for 2 months. Airway hyperresponsiveness (AHR), lung inflammation and T-cell responses in cervical and mediastinal LNs were assessed by whole-body plethysmography, lung histology and Cytometric Bead Array technology, respectively. Only a mucoadhesive (i.e. highly positively charged) and microparticulate form of chitosan enhances OVA uptake, processing and presentation by murine BMDCs and oral APCs. Targeting OVA to dendritic cells with this formulation increases specific T-cell proliferation and IFN-gamma/IL-10 secretion in vitro, as well as T-cell priming in cervical LNs in vivo. Sublingual administration of such chitosan-formulated OVA particles enhances tolerance induction in mice with established asthma, with a dramatic reduction of both AHR, lung inflammation, eosinophil numbers in bronchoalveolar lavages, as well as antigen-specific Th2 responses in mediastinal LNs. Mucoadhesive chitosan microparticles represent a valid formulation for sublingual allergy vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call