Abstract

Long-term potentiation (LTP) and long-term depression (LTD) of hippocampal synaptic transmission represent the principal experimental models underlying learning and memory. Alterations of synaptic plasticity are observed in several neurodegenerative disorders, including Alzheimer’s disease (AD). Indeed, synaptic dysfunction is an early event in AD, making it an attractive therapeutic target for pharmaceutical intervention. To date, intensive investigations have characterized hippocampal synaptic transmission, LTP, and LTD in in vitro and in murine models of AD. In this review, we describe the synaptic alterations across the main AD models generated so far. We then examine the clinical perspective of LTP/LTD studies and discuss the limitations of non-clinical models and how to improve their predictive validity in the drug discovery process.

Highlights

  • Long-term synaptic plasticity is considered the neural basis of learning and memory process (Bliss and Collingridge, 1993)

  • Long-term potentiation (LTP) and long-term depression (LTD) are the major forms of durable synaptic strength changes in central nervous system abundantly studied in the hippocampal region (Malenka and Bear, 2004)

  • The magnitude of LTP and LTD is largely used in many different experimental conditions and animal models as an indicator of cognitive function; on the other hand, dysregulation of synaptic plasticity underlies a large number of neurodegenerative disorders such as Alzheimer’s disease (AD) (Selkoe, 2002)

Read more

Summary

Introduction

Long-term synaptic plasticity is considered the neural basis of learning and memory process (Bliss and Collingridge, 1993). Many studies investigated the correlation between age and synaptic dysfunction in order to describe the onset and development of pathology in a specific mouse model.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.