Abstract
Steroid receptors such as the androgen and estrogen receptors require the presence of several proteins, known as coactivators, to enhance the transcription of target genes. The first goal of the present study was to define the role of SRC-1 on the steroid-dependent expression of the aromatase protein and its activity in male Japanese quail. The second goal was to analyze the rapid plasticity of the POM following antisense treatment interruption. We confirm here that the inhibition of SRC-1 expression by daily intracerebroventricular injections of locked nucleic acid antisense oligonucleotides in the third ventricle at the level of the preoptic area-hypothalamus (HPOA) significantly reduces testosterone-dependent male sexual behavior. In the first experiment, aromatase protein expression in HPOA was inhibited in SRC-1-depleted males but the enzymatic activity remained at the level measured in controls. We observed in the second experiment a recovery of the behavioral response to testosterone treatment after interruption of the antisense injection. However, several morphological characteristics of the POM were not different between the control group, the antisense-treated birds and antisense-treated birds in which treatment had been discontinued 3 days earlier. Antisense was also less effective in knocking-down SRC-1 in the present experiments as compared to our previous study. An analysis of this variation in the degree of knock-down of SRC-1 expression suggests dissociation among different aspects of steroid action on brain and behavior presumably resulting from the differential sensitivity of behavioral and neurochemical responses to the activation by testosterone and/or its estrogenic metabolites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.