Abstract
Staphylococcus aureus-mediated infection is a serious threat in this antimicrobial-resistant world. S. aureus has become a "superbug" by challenging conventional as well as modern treatment strategies. Nowadays, drug repurposing has become a new trend for the discovery of new drug molecules. This study focuses on evaluating FDA-approved drugs that can be repurposed against S. aureus infection. Steered molecular dynamics (SMD) has been performed for Lumacaftor and Olaparib against staphylococcal FemX to understand their binding to the active site. A time-dependent external force or rupture force has been applied to the ligands to calculate the force required to dislocate the ligand from the binding pocket. SMD analysis indicates that Lumacaftor has a high affinity for the substrate binding pocket in comparison to Olaparib. Umbrella sampling exhibits that Lumacaftor possesses a higher free energy barrier to displace it from the ligand-binding site. The bactericidal activity of Lumacaftor and Olaparib has been tested, and it shows that Lumacaftor has moderate activity along with biofilm inhibition potential (MIC value with conc. 128 μg/mL). Pharmacokinetic and toxicology evaluations indicate that Lumacaftor has higher pharmacokinetic potential with lower toxicity. This is the first experimental report where staphylococcal FemX has been targeted for the discovery of new drugs. It is suggested that Lumacaftor may be a potential lead molecule against S. aureus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.