Abstract

We recently described a novel ribosome-based regulatory mechanism/checkpoint that controls innate immune gene translation and microglial activation in non-sterile inflammation orchestrated by RNA binding protein SRSF3. Here we describe a role of SRSF3 in the regulation of microglia/macrophage activation phenotypes after experimental stroke. Using a model-system for analysis of the dynamic translational state of microglial ribosomes we show that 24h after stroke highly upregulated immune mRNAs are not translated resulting in a marked dissociation of mRNA and protein networks in activated microglia/macrophages. Next, microglial activation after stroke was characterized by a robust increase in pSRSF3/SRSF3 expression levels. Targeted knockdown of SRSF3 using intranasal delivery of siRNA 24h after stroke caused a marked knockdown of endogenous protein. Further analyses revealed that treatment with SRSF3-siRNA alleviated translational arrest of selected genes and induced a transient but significant increase in innate immune signaling and IBA1+ immunoreactivity peaking 5days after initial injury. Importantly, delayed SRSF3-mediated increase in immune signaling markedly reduced the size of ischemic lesion measured 7days after stroke. Together, our findings suggest that targeting SRSF3 and immune mRNA translation may open new avenues formolecular/therapeutic reprogramming of innate immune response after ischemic injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.