Abstract

Specificity protein 1 (SP1) was found to play a critical role in the regulation of TGF-β1 driven epithelial-mesenchymal transition (EMT). Recent clinical findings demonstrated a significant drop in the expression of miR-128-3p with the cancer progression in breast cancer patients. However, the impact of miR-128-3p on the SP1 expression in breast cancer remains unknown. Herein, we evaluated the role of miR-128-3p mimics in suppressing EMT of breast cancer cell lines by regulating the TGF-β1/SP1 axis. miR-128-3p interaction with SP1 was detected by in silico tools and dual-luciferase reporter assay. qPCR, western blot, and immunocytochemistry experiments were conducted for determining the expression levels of miR-128-3p and EMT markers with and without the treatment of miR-128-3p mimics. Further, to understand the effect of miR-128-3p mimics on cancer progression, experiments such as wound healing assay, transwell assay, adhesion assay, and cell cycle analysis were performed. A significant inverse relation between SP1 and miR-128-3p levels was found in MCF-7 and MDA-MB-231 cell lines. miR-128-3p overexpression impeded the SP1 mediated EMT markers in TGF-β1 stimulated cells by inhibiting the SP1 nuclear function. Further, treatment with miR-128-3p mimics significantly reduced the migration, invasion and spreading capability of TGF-β1 stimulated cells. Flow cytometry results showed the impeding role of miR-128-3p on the cell cycle progression. Upregulated miR-128-3p inhibited SP1, thereby limiting the TGF-β1 induced EMT in MCF-7 and MDA-MB-231 cell lines for the first time. This study may pave the path to explore novel miRNA therapeutics for eradicating advanced breast cancer cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call