Abstract
At present, global vaccination for the SARS-CoV2 virus 2019 (COVID-19) is 95% effective. Generally, viral infections are arduous to cure due to the mutating nature of viral genomes, with the consequent quick development of resistance, posing significant fatalities or hazards. The novel corona viral strains are increasingly lethal than earlier variants, as those evolve faster than imagined. Despite the emergence of several present innovative treatment options, the vaccines, and available drugs, the latter still are the needs of the time. Therefore, repurposing the approved pharmaceutical drugs of a well-known safety profile would be ascertained to provide faster antiviral approaches for the newer strains of COVID-19. Recently, a combination of remdesivir, which has a competitively inhibitory effect on the nucleotide uptake in the virus, and the merimepodibs, an inhibitor of the enzyme inosine monophosphate dehydrogenase, which has a role in the synthesis of nucleotides of guanine bases, is in use in phase 2 clinical trials. However, new investigations suggest that using remdesivir, there is no statistically significant difference with uncertain clinical importance for moderate COVID-19 patients. Herein, an intellectual selection of approved drugs based on the safety profile is described, to target any essential enzymes that are required for the virus-receptor contact, fusion, and/or different stages of the life cycle of this virus, should help to screen drugs against newer strains of COVID-19.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.