Abstract
Ischemia and reperfusion (IR) damage organs and contribute to many disease states. Few effective treatments exist that attenuate IR injury. The augmentation of nitric oxide (NO) signaling remains a promising therapeutic target for IR injury. NO binds to soluble guanylyl cyclase (sGC) to regulate vasodilation, maintain endothelial barrier integrity, and modulate inflammation through the production of cyclic-GMP in vascular smooth muscle. Pharmacologic sGC stimulators and activators have recently been developed. In preclinical studies, sGC stimulators, which augment the reduced form of sGC, and activators, which activate the oxidized non-NO binding form of sGC, increase vasodilation and decrease cardiac, cerebral, renal, pulmonary, and hepatic injury following IR. These effects may be a result of the improved regulation of perfusion and decreased oxidative injury during IR. sGC stimulators are now used clinically to treat some chronic conditions such as heart failure and pulmonary hypertension. Clinical trials of sGC activators have been terminated secondary to adverse side effects including hypotension. Additional clinical studies to investigate the effects of sGC stimulation and activation during acute conditions, such as IR, are warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.