Abstract

Chemoresistance is the inevitable outcome of chemotherapy for epithelial ovarian carcinoma (EOC), and its mechanism is still not fully understood. This study explored the role of ribosomal protein L23 (RPL23) in cisplatin resistance of EOC. WGCNA based on TCGA and GEO was used to screen and analyze target genes related to EOC chemotherapy sensitivity. Clinical samples of cisplatin resistance were collected to detect the expression of target genes. Cisplatin resistance was induced in EOC cell lines A2780 and SKOV3. The cell abilities of invasion, migration and adhesion were observed. Western blotting was used to detect protein expressions. Bioinformatics analysis showed that RPL23 may be related to EOC chemotherapy sensitivity, and was highly expressed in clinical samples and cell lines of cisplatin-resistant. After A2780 and SKOV3 were resistant to cisplatin, the inhibitory abilities of therapeutic dose of cisplatin on their invasion, migration and adhesion were significantly attenuated, and N-cadherin and vimentin were significantly up-regulated while E-cadherin was significantly down-regulated. However, above phenomena were significantly reversed after RPL23 knockdown. Taken together, the overexpressed RPL23 may lead to platinum resistance by inducing epithelial-mesenchymal transition (EMT) in EOC. Targeting knockdown RPL23 would restore the sensitivity of EOC cells to cisplatin by inhibiting EMT, suggesting that RPL23 is a potential therapeutic target for EOC after platinum resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call