Abstract

Human newborns and infants are bombarded with multiple pathogens on leaving the sterile intra-uterine environment, and yet have suboptimal innate immunity and limited immunological memory, thus leading to increased susceptibility to infections in early life. They are thus the target age group for a host of vaccines against common bacterial and viral pathogens. They are also the target group for many vaccines in development, including those against tuberculosis (TB), malaria, and HIV infection. However, neonatal and infant responses too many vaccines are suboptimal, and in the case of the polysaccharide vaccines, it has been necessary to develop the alternative conjugated formulations in order to induce immunity in early life. Immunoregulatory factors are an intrinsic component of natural immunity necessary to dampen or control immune responses, with the caveat that they may also decrease immunity to infections or lead to chronic infection. This review explores the key immunoregulatory factors at play in early life, with a particular emphasis on regulatory T cells (Tregs). It goes on to explore the role that Tregs play in limiting vaccine immunogenicity, and describes animal and human studies in which Tregs have been depleted in order to enhance vaccine responses. A deeper understanding of the role that Tregs play in limiting or controlling vaccine-induced immunity would provide strategies to improve vaccine immunogenicity in this critical age group. New adjuvants and drugs are being developed that can transiently suppress Treg function, and their use as part of human vaccination strategies against infections is becoming a real prospect for the future.

Highlights

  • The infant immune system is uniquely adapted to meet the challenges of early life (Kollmann et al, 2012)

  • We will discuss the role of Tregs in malaria, HIV, and hepatitis C virus (HCV) infections; and briefly describe the results of clinical trials in human infants of vaccines against these three infections

  • We will discuss immunotherapeutic agents and vaccine adjuvants developed for use in humans that can down-modulate Treg activity and enhance vaccine efficacy, demonstrating that this approach is a viable option for the future

Read more

Summary

INTRODUCTION

The infant immune system is uniquely adapted to meet the challenges of early life (Kollmann et al, 2012). At the same time the infant needs to develop immune memory upon pathogen encounter in order to be protected against future challenge. The newborn has little immunological memory, and neonates and infants are heavily reliant on innate immunity to protect them against antigenic challenge as discussed in a series of comprehensive review articles (Levy, 2007; Ghazal et al, 2013; Levy and Wynn, 2014). In this review we discuss the regulatory factors that infants employ to suppress or control their developing immunity. We will focus on regulatory T cells (Tregs) in particular, and the potential role they play in suppressing or controlling vaccine-induced immunity in early life. A detailed understanding of the immunoregulatory factors controlling vaccine immunogenicity in early life may provide potential strategies for improving vaccine efficacy in this vulnerable age group. We will discuss immunotherapeutic agents and vaccine adjuvants developed for use in humans that can down-modulate Treg activity and enhance vaccine efficacy, demonstrating that this approach is a viable option for the future

THE INFANT IMMUNE SYSTEM
Ndure and Flanagan
Infant T cell immunity
BCG at
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.