Abstract

Mantle cell lymphoma (MCL) is associated with poor survival. The purpose of this study was to assess whether the C-X-C chemokine receptor type 4 (CXCR4) is a useful target for imaging and radioligand therapy of MCL, using a novel pair of radioligands, [68Ga]Ga and [177Lu]Lu-BL02. We performed a retrospective analysis of 146 patients with MCL to evaluate CXCR4 expression and its correlation with outcomes. Guided by in silico methods, we designed BL02, a new radioligand labelled with 68Ga or 177Lu for PET imaging and therapy, respectively. We performed imaging and biodistribution studies in xenograft models with varying CXCR4 expression. We evaluated [177Lu]Lu-BL02 in MCL models, and evaluated its potential for therapy in Z138 MCL xenografts. Phosphorylated and nonphosphorylated CXCR4 expression were correlated with poor survival in patients with MCL and characterized by unique underlying molecular signatures. [68Ga]Ga-BL02 uptake correlated with CXCR4 expression, and localized lesions in a metastatic xenograft model. [177Lu]Lu-BL02 showed high uptake in MCL xenografts. Therapy studies with a single dose in the Z138 model showed tumor regression and improved survival compared with a control group. Upon regrowth, the treated mice experienced concurrent metastasis alongside localized xenograft regrowth, and recurrent lesions showed enhanced CXCR4 signaling. CXCR4 is an independent factor of poor prognosis for MCL and a promising target for imaging and radioligand therapy. [68Ga]Ga-BL02 showed high contrast to visualize CXCR4-expressing xenografts for PET imaging and [177Lu]Lu-BL02 induced rapid tumor regression in a preclinical model of MCL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call