Abstract

Hypertension is a major risk factor for vascular diseases such as stroke, myocardial infarction, and renal microvascular disease. The mechanism by which vascular disease develops is complex, and growing evidence suggests that an increase in reactive oxygen species during hypertension is a major contributing factor. NADPH oxidase, the primary source of reactive oxygen species in the cardiovascular system, is a strong candidate for the development of therapeutic agents to ameliorate hypertension and end-organ damage. Various scavengers and inhibitors of reactive oxygen species have been proposed for use in animal as well as human studies. While many of these agents are effective at lowering tissue reactive oxygen species levels, their specificity is a serious concern. Our laboratory has developed cell-permeant peptidic inhibitors targeting key interactions among the different NAD(P)H oxidase homologues. One of these inhibitors targeting nox2 and p47-phox interaction has proven useful in attenuating target neoplasia and hypertrophy. Strategies aimed at specifically inhibiting NAD(P)H oxidase have proven effective in attenuating cardiovascular oxidative stress. The development of new inhibitors targeting novel oxidase homologues appears to hold significant promise for clarifying the physiologic role of these homologues as well as for the development of new antioxidant therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.