Abstract
Overcoming cisplatin-based drug resistance in lung cancer remains an enormous challenge in clinical tumor therapy worldwide. Recent studies have reported that some Rab GTPases are involved in multiple aspects of tumor progression, including invasion, migration, metabolism, autophagy, exosome secretion, and drug resistance. In particular, Rab26 is essential to vital processes such as vesicle-mediated secretion, cell growth, apoptosis, and autophagy. In this study, we developed a nanosystem based on programmed DNA self-assembly of Rab26 siRNA-loaded nanoparticles (siRNP). We demonstrated that siRNP could be effectively transfected into cisplatin-resistant A549 (A549/DDP) cells. These siRab26-carrying nanoparticles induced apoptosis and inhibited the disruption of autophagy. The combination therapy of siRab26 knockdown with cisplatin could improve the antitumor therapy compared with a single one in vitro. In nude mice, siRNP enhanced the chemosensitivity of cisplatin-resistant cells and inhibited tumor xenograft development. These outcomes suggest that siRNP is an effective platform for lung cancer therapy in cases exhibiting drug resistance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.