Abstract

We have previously reported the construction of a cell cycle-regulated HSV-1 amplicon vector (denoted as pC8-36) that confers luciferase reporter gene activities dependent on cellular divisions. However, luciferase reporter gene is well known for its relatively high sensitivity, thus, it is crucial to evaluate the therapeutic efficacy of a transcriptional targeted vector. In this report, we have engineered the FasL and FADD genes into pC8-36 and demonstrated their efficacy for the treatment of human gliomas in vitro and in vivo. Using trypan blue dye exclusion and TUNEL assay, FasL expression mediated by pC8-36 was shown to induce a significantly higher percentage of cell death in proliferating cells than those observed in the G(1)-arrested cells. The observed cell killing effect correlated well with the level of FasL protein expression when analyzed by ELISA assay. Furthermore, the incorporation of both FasL and FADD into pC8-36 resulted in the enhancement of apoptosis in the target glioma cells both in vitro and in vivo. Targeting proliferating tumor cells via the transcriptional control of therapeutic genes could potentially improve the safety and efficacy of cancer gene therapy, and thus would allow the development of strategies for more effective anticancer therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.