Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. PPARgamma regulates several metabolic pathways by binding to sequence-specific PPAR response elements in the promoter region of genes involved in lipid biosynthesis and glucose metabolism. However, more recently PPARgamma, PPARalpha and PPARbeta/delta agonists have been demonstrated to exhibit anti-inflammatory and immunomodulatory properties thus opening up new avenues for research. The actions of PPARgamma and PPARalpha activation are thought to be due to their ability to down regulate pro-inflammatory gene expression and inflammatory cell functions, and as such makes them an attractive target for novel drug intervention. Interestingly, PPARbeta/delta has been shown to be involved in wound healing, angiogenesis, lipid metabolism and thrombosis. In this review we will focus on the data describing the beneficial effects of these ligands in the airway and in the pulmonary vasculature and in vivo in animal models of allergic and occupational asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. A clinical trial is underway to examine the effect of rosiglitazone in asthma patients and the outcome of this trial is awaited with much anticipation. In conclusion, PPARs are novel targets for lung disease and continued work with these ligands may result in a potential new treatment for chronic inflammatory lung diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.