Abstract
Paclitaxel (PTX)-loaded PEGylated PLGA-based nanoparticles (NP) have been previously described as more effective in vitro and in vivo than Taxol ®. The aim of this study was to test the hypothesis that our PEGylated PLGA-based nanoparticles grafted with the RGD peptide or RGD-peptidomimetic (RGDp) would target the tumor endothelium and would further enhance the anti-tumor efficacy of PTX. The ligands were grafted on the PEG chain of PCL-b-PEG included in the nanoparticles. We observed in vitro that RGD-grafted nanoparticles were more associated to Human Umbilical Vein Endothelial cells (HUVEC) by binding to α vβ 3 integrin than non-targeted nanoparticles. Doxorubicin was also used to confirm the findings observed for PTX. In vivo, we demonstrated the targeting of RGD and RGDp-grafted nanoparticles to tumor vessels as well as the effective retardation of TLT tumor growth and prolonged survival times of mice treated by PTX-loaded RGD-nanoparticles when compared to non-targeted nanoparticles. Hence, the targeting of anti-cancer drug to tumor endothelium by RGD-labeled NP is a promising approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.