Abstract

The molecular circuitry underlying innate immunity is constructed of multiple, evolutionarily conserved signaling modules with distinct regulatory targets. The MAP kinases and the IKK-NF-kappa B molecules play important roles in the initiation of immune effector responses. We have found that the Drosophila NF-kappa B protein Relish plays a crucial role in limiting the duration of JNK activation and output in response to Gram-negative infections. Relish activation is linked to proteasomal degradation of TAK1, the upstream MAP kinase kinase kinase required for JNK activation. Degradation of TAK1 leads to a rapid termination of JNK signaling, resulting in a transient JNK-dependent response that precedes the sustained induction of Relish-dependent innate immune loci. Because the IKK-NF-kappa B module also negatively regulates JNK activation in mammals, thereby controlling inflammation-induced apoptosis, the regulatory cross-talk between the JNK and NF-kappa B pathways appears to be broadly conserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.