Abstract
The present study aimed to investigate the effects of Na+/H+ exchanger regulatory factor 1 (NHERF1) gene knockdown, using short-hairpin RNA (shRNA), on the malignant behaviors of prostate cancer cells. A pSuper.puro NHERF1 shRNA vector was transfected into PC-3M prostate cancer cells using Lipofectamine 2000. Stable cell lines were obtained and NHERF1 knockdown was verified through western blot analysis. MTT assays were then used to measure PC-3M cell proliferation; in addition, cell migration was assessed using a wound healing assay. Flow cytometry was employed in order to determine the effects of NHERF1 knockdown on apoptosis. Expression levels of apoptotic pathway proteins B cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein were then determined by western blot analysis. The results demonstrated that shRNA knockdown of NHERF1 significantly suppressed the proliferation of PC-3M cells by >50%. In addition, knockdown of NHERF1 significantly inhibited the migration of PC-3M cells. PC-3M cells harboring NHERF1 shRNA exhibited significantly increased apoptosis, with an ~4-fold increase compared with that of the parental PC-3M cells and cells transfected with an empty vector. Furthermore, the results revealed that knockdown of NHERF1 reduced the protein expression of Bcl-2, although the expression of Bax was unaltered. In conclusion, NHERF1 knockdown using shRNA inhibited the proliferation and migration of PC-3M cells and promoted apoptosis, highlighting the role of NHERF1 in prostate cancer progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.