Abstract

Conventional anti-tuberculosis (TB) therapies comprise lengthy antibiotic treatment regimens, exacerbated by multi-drug resistant and extensively drug resistant mycobacterial strains. We assessed the ability of all-trans retinoic acid (ATRA), as repurposed compound serving as host-directed therapy (HDT), to counteract the suppressive effects of myeloid-derived suppressor cells (MDSCs) obtained from active TB cases (untreated or during week one of treatment) on T-cell responsiveness. We show for the first time that MDSCs suppress non-specific T-cell activation and production of interleukin (IL)-2, IL-4, IL-13 and GM-CSF via contact-dependent mechanisms. ATRA treatment decreases MDSC frequency, but fails to mature MDSCs to non-suppressive, terminally differentiated myeloid cells and does not restore T-cell function or cytokine production in the presence of MDSCs. The impact of ATRA treatment on improved immunity, using the concentration tested here, is likely to be minimal, but further identification and development of MDSC-targeting TB host-directed therapies are warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.