Abstract

Dystroglycan is a cell adhesion molecule that interacts with ezrin family proteins and also components of the extracellular signal-regulated kinase pathway. Ezrin and extracellular signal-regulated kinase are both involved in aspects of the cell division cycle. We therefore examined the role of dystroglycan during cytokinesis. Endogenous dystroglycan colocalised with ezrin at the cleavage furrow and midbody during cytokinesis in REF52 cells. Live cell imaging of green fluorescent protein-tagged dystroglycan in Swiss 3T3 and Hela cells revealed a similar localisation. Live cell imaging of a dystroglycan lacking its cytoplasmic domain revealed an even membrane localisation but no cleavage furrow or midbody localisation. Deletion of a previously identified ezrin-binding site in the dystroglycan cytoplasmic domain however only resulted in a slight reduction in cleavage furrow localisation but loss of midbody staining. There was no apparent cytokinetic defect in cells depleted for dystroglycan, however apoptosis levels were considerably higher in dystroglycan knockdown cells. Cell cycle analysis showed a delay in G2/M transition, possibly caused by a more than 50% reduction in extracellular signal-regulated kinase levels in the knockdown cells. Dystroglycan may therefore not only have a role in organising the contractile ring through direct or indirect associations with actin, but can also modulate the cell cycle by affecting extracellular signal-regulated kinase levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.