Abstract
Stanniocalcin (STC) is a large polypeptide hormone that is widely distributed in tissues such as kidney, adrenal, and ovary. In most tissues, STC exists as a 50-kDa homodimer (STC50). The ovaries produce a higher molecular weight variant (big STC) in androgen-producing theca cell and interstitial cell compartments. Luteal cells, which do not express the STC gene, nonetheless contain high levels of STC protein, suggesting they are targeted by and sequester big STC through a receptor-mediated process. Recently, an STC.alkaline phosphatase fusion protein was used to characterize mitochondrial targeting and sequestration of STC50 and its receptor in liver and kidney. The main objective of the present study was to characterize big STC and its receptor in mammalian ovary and determine whether the ovarian STC variant was similarly targeted to luteal cell mitochondria. By in situ ligand binding, we identified large numbers of STC receptors on corpus luteal cells. However, a more detailed analysis of sub-cellular fractions revealed that both STC and its receptor were not preferentially targeted to mitochondria but instead to cholesterol/lipid storage droplets, which was more indicative of a role in steroidogenesis. Functional studies revealed that additions of big STC had concentration-dependent inhibitory effects on both basal and stimulated progesterone output by primary cultured luteal cells. Furthermore, STC receptor levels were up-regulated in luteal cells in response to protein kinase A activation. Taken together, these findings indicate that theca cell-derived big STC is targeted to the cholesterol/lipid storage droplets of luteal cells to regulate steroidogenesis. This constitutes the first reported description of polypeptide hormone and receptor targeting to cholesterol/lipid droplets and the first biological role for the big STC variant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.