Abstract

PEGylated long-circulating liposomes were used as a delivery system of antibiotics providing enhancements in antibiotic pharmacokinetics and penetration to infected sites. Pharmacokinetic and therapeutic efficacy studies were performed in the model of unilateral pneumonia/septicemia caused by Klebsiella pneumoniae in rats with intact host defense or leukopenic rats. Gentamicin was encapsulated in PEGylated liposomes designed to achieve delivery of antibiotic to the infected left lung tissue. Our data show that the efficacy of liposomal gentamicin was superior to free gentamicin particularly in difficult to treat infection due to impaired host defense (leukopenia) or low antibiotic susceptibility of the infectious organism. In leukopenic rats infected with a high gentamicin-susceptible bacterial strain, free gentamicin must be administered at the maximum tolerated dose to be therapeutically effective. The addition of a single dose of liposome-encapsulated gentamicin on the first day of treatment with free gentamicin leads to full therapeutic efficacy while keeping the antibiotic doses low. In even more difficult to treat infection due to both an impaired host defense (leukopenia) and low gentamicin-susceptibility of the bacterial strain, free gentamicin is not effective, and the addition of the liposome-encapsulated form of gentamicin is needed to achieve full therapeutic efficacy. In this respect, the lipid composition of the liposomes is an important determinant in establishing both sufficient antibiotic levels in blood and sufficient release of antibiotic from the liposomes at the infectious focus.Ciprofloxacin was encapsulated in PEGylated liposomes designed to serve as a microreservoir of antibiotic during circulation in blood. Our data show that the administration of ciprofloxacin in the liposomal form resulted in slow release of ciprofloxacin from the liposomes over time in blood. Delayed ciprofloxacin clearance, as well as increased and prolonged ciprofloxacin concentrations in blood and tissues was observed. The therapeutic efficacy of liposomal ciprofloxacin was superior to that of free ciprofloxacin. PEGylated liposomal ciprofloxacin was well tolerated in relatively high doses (increasing the maximum tolerated dose for free ciprofloxacin), permitting the administration on a once-a-day schedule without loss in therapeutic efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.