Abstract

AimsTo identify N-acetyltransferase 10 (NAT10) and its downstream signaling pathways in myocytes and skeletal muscle, and to investigate its role in inflammation-induced muscle atrophy. Materials and methodsCecal ligation and puncture models were used to induce sepsis in C57BL/6 mice, which were treated with either a NAT10 inhibitor or a control agent. The therapeutic effect of NAT10 inhibitor was investigated by evaluating the mass, morphology, and molecular characteristics of mouse skeletal muscle. C2C12 cells were stimulated with LPS, and the expression of the NAT10 gene, downstream protein content, and atrophy phenotype were analyzed using a NAT10 inhibitor, to further explore the atrophic effect of NAT10 on C2C12 differentiated myotubes. ResultsGene set enrichment analysis revealed that NAT10 expression was elevated in the Lateral femoris muscle of patients with ICUAW. In vitro and in vivo experiments showed that sepsis or LPS induced the upregulation of NAT10 expression in skeletal muscles and C2C12 myotubes. Skeletal muscle mass, tissue morphology, gene expression, and protein content were associated with atrophic response in sepsis models. Remodelin ameliorated the LPS-induced skeletal muscle weight loss, as well as muscular atrophy, and improved survival. Remodelin reversed the atrophy program that was induced by inflammation through the downregulation of the ROS/NLRP3 pathway, along with the inhibition of the expression of MuRF1 and Atrogin-1. ConclusionNAT10 is closely related to skeletal muscle atrophy during sepsis. Remodelin improves the survival rate of mice by improving the systemic inflammatory response and skeletal muscle atrophy by downregulating the ROS/NLRP3 signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.