Abstract

BackgroundImmune checkpoint inhibitors have improved overall survival rates for many cancers, yet the majority of patients do not respond to treatment and succumb to disease progression. One tumor-related mechanism limiting the efficacy of immunotherapies in melanoma is the recruitment and expansion of myeloid-derived suppressor cells (MDSCs). Therefore, targeting MDSCs in combination with immunotherapies is an attractive strategy to improve response rates and effectiveness. MethodsWe tested this strategy by designing a randomized phase II clinical trial treating advanced melanoma patients with either Ipilimumab monotherapy or Ipilimumab plus all-trans retinoic acid (ATRA). Clinicaltrails.gov identifier (NCT02403778). The frequency of circulating MDSCs and the activation of CD8(+) T cells was measured by flow cytometry. Expression of immunosuppressive genes was measured with quantitative real time-PCR. T cell suppressive functions were measured by mixed lymphocyte reaction. ResultsHere we show that in vitro treatment with ATRA decreases immunosuppressive function of MDSCs in mixed lymphocyte reactions. Additionally, ATRA reduces the expression of immunosuppressive genes including PD-L1, IL-10, and indoleamine 2,3‑dioxygenase by MDSCs. Furthermore, the addition of ATRA to standard of care Ipilimumab therapy appears safe, as ATRA did not increase the frequency of grade 3 or 4 adverse events. Finally, ATRA significantly decreased the frequency of circulating MDSCs compared to Ipilimumab treatment alone in advanced-stage melanoma patients. ConclusionsThese results illustrate the importance of MDSCs in immunotherapy resistance and provide evidence that targeting MDSCs in cancer patients may augment immunotherapeutic approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call