Abstract

BackgroundSolid tumors produce proteins that can induce the accumulation of bone marrow-derived cells in various tissues, and these cells can enhance metastatic tumor growth by several mechanisms. 4T1 murine mammary tumors are known to produce granulocyte colony-stimulating factor (G-CSF) and increase the numbers of immunosuppressive CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) in tissues such as the spleen and lungs of tumor-bearing mice. While surgical resection of primary tumors decreases MDSC levels in the spleen, the longevity and impact of MDSCs and other immune cells in the lungs after tumor resection have been less studied.MethodsWe used mass cytometry time of flight (CyTOF) and flow cytometry to quantify MDSCs in the spleen, peripheral blood, and lungs of mice bearing orthotopic murine mammary tumors. We also tested the effect of primary tumor resection and/or gemcitabine treatment on the levels of MDSCs, other immune suppressor and effector cells, and metastatic tumor cells in the lungs.ResultsWe have found that, similar to mice with 4T1 tumors, mice bearing metastatic 4T07 tumors also exhibit accumulation of CD11b+Gr1+ MDSCs in the spleen and lungs, while tissues of mice with non-metastatic 67NR tumors do not contain MDSCs. Mice with orthotopically implanted 4T1 tumors have increased granulocytic (G-) MDSCs, monocytic (M-) MDSCs, macrophages, eosinophils, and NK cells in the lungs. Resection of primary 4T1 tumors decreases G-MDSCs, M-MDSCs, and macrophages in the lungs within 48 h, but significant numbers of functional immunosuppressive G-MDSCs persist in the lungs for 2 weeks after tumor resection, indicative of an environment that can promote metastatic tumor growth. The chemotherapeutic agent gemcitabine depletes G-MDSCs, M-MDSCs, macrophages, and eosinophils in the lungs of 4T1 tumor-bearing mice, and we found that treating mice with gemcitabine after primary tumor resection decreases residual G-MDSCs in the lungs and decreases subsequent metastatic growth.ConclusionsOur data support the development of therapeutic strategies to target MDSCs and to monitor MDSC levels before and after primary tumor resection to enhance the effectiveness of immune-based therapies and improve the treatment of metastatic breast cancer in the clinic.

Highlights

  • Solid tumors produce proteins that can induce the accumulation of bone marrow-derived cells in various tissues, and these cells can enhance metastatic tumor growth by several mechanisms. 4T1 murine mammary tumors are known to produce granulocyte colony-stimulating factor (G-CSF) and increase the numbers of immunosuppressive CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) in tissues such as the spleen and lungs of tumor-bearing mice

  • We have found that in addition to mice bearing 4T1 tumors, mice orthotopically implanted with metastatic 4T07 murine mammary tumors, but not non-metastatic 67NR tumors, have high levels of functional, immunosuppressive CD11b+Gr1+ MDSCs in the lungs

  • These cell lines were originally derived from a spontaneous mammary tumor in a Balb/ cfC3H mouse and represent different levels of metastatic propensity [33]. 4T1 tumor cells metastasize to the lung, liver, bone, and brain; 4T07 cells metastasize to the lungs and liver, but fail to grow into macroscopic metastases; 67NR cells do not metastasize

Read more

Summary

Introduction

Solid tumors produce proteins that can induce the accumulation of bone marrow-derived cells in various tissues, and these cells can enhance metastatic tumor growth by several mechanisms. 4T1 murine mammary tumors are known to produce granulocyte colony-stimulating factor (G-CSF) and increase the numbers of immunosuppressive CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) in tissues such as the spleen and lungs of tumor-bearing mice. Solid tumors produce proteins that can induce the accumulation of bone marrow-derived cells in various tissues, and these cells can enhance metastatic tumor growth by several mechanisms. Localized microenvironments can form in metastatic target organs, consisting of supportive stromal cells, pro-tumorigenic proteins, and a variety of different bone marrow-derived cells. These “pre-metastatic niches” are thought to represent fertile regions of tissue that facilitate the subsequent invasion, survival, and proliferation of metastatic tumor cells [4, 5]. The tumor-derived factors and cells present in pre-metastatic niches differ between model tumor systems [5], and evidence in immunocompetent mice indicates an important role for immunosuppressive cells in promoting metastatic growth in distant tissues

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call