Abstract

Breast cancer stem cells (BCSCs) have been suggested to contribute to chemotherapeutic resistance and disease relapse in breast cancer. Thus, BCSCs represent a promising target in developing novel breast cancer treatment strategies. Mitochondrial dynamics in BCSCs were recently highlighted as an available approach for targeting BCSCs. In this study, a three-dimensional (3D) cultured breast cancer stem cell spheres model was constructed. Mitochondrial dynamics and functions were analyzed by flow cytometry and confocal microscopy. We have demonstrated that the protein levels of FIS 1 and Mitofusin 1 were significantly increased in BCSCs. Moreover, Capivasertib (AZD5363) administration could suppress Mitofusin1 expression in BCSCs. Our use of MitoTracker Orange and annexin V double-staining assay suggested that AZD5363 could induce apoptosis in BCSCs. The sensitivity of stem cell spheres to doxorubicin was investigated by CCK8 assay, and our results indicated that AZD5363 could re-sensitize BCSCs to Doxo. Flow cytometry analysis identified doxo-induced CD44 and CD133 expression in BCSCs could be suppressed by AZD5363. In combination with AZD536, doxo-induced apoptosis in the BCSCs was significantly increased. In conclusion, our study explored, for the first time, that AZD5363 could target mitochondrial dynamics in 3D cultured stem cell spheres (BCSCs) by regulating Mitofusin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.